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We have simulated the nonlinear dynamics of a two-dimensional lattice of damped-driven oscillators
where the dynamical state of the isolated individual oscillator is chaotic. Harmonic coupling between
these oscillators results in a very rich and complex spatiotemporal dynamics as a function of coupling
strength. The dynamics is characterized by coherent clusters of energy moving randomly in a structure-
less background, growing in size with increasing coupling, and undergoing a sequence of “freezing tran-
sitions” until a coupling is reached where a single cluster dominates the lattice extent. The intricate in-
terplay of coherent and random dynamics suggests a possible analogy with high Reynolds number tur-
bulent flow. Extended self-similarity proposed for turbulent flows and applied to this problem indicates
a universality in the dynamics. This suggests that the extension to other (more realistic) representations
of physical systems may provide a fruitful paradigm for studying dynamical disorder in the real world.

PACS number(s): 05.45.+b

A lattice of interacting point particles is a paradigm
from which we have learned about certain limited
dynamical behavior that occurs in many-body systems.
From this idealized model, a more general picture has
evolved of a dynamical system defined by an assembly of
a large number of identical subsystems of known intrinsic
dynamics that are coupled to each other in some specific
manner [1,2]. The general goal is to study the global
dynamical behavior of the total system on the basis of the
known nature of the subsystem and the coupling between
a large number of subsystems. We recently studied an
application of this synthetic view of a dynamical system
by allowing a much richer intrinsic behavior of the ele-
mentary subsystem [3]; in particular, we considered the
dynamics of the “independent” subsystem to be c¢haotic,
instead of a point-atom or a simpler limit-cycle oscillator.
For a linear chain of chaotic oscillators, we discovered
that harmonic lattice coupling gave rise to a complex and
rich spatiotemporal many-body dynamics as a function of
coupling strength. This present study extends this model
to two dimensions, and the higher dimension results in
entirely different spatiotemporal dynamics. We will show
that this new dynamics has much similarity with real
fluid turbulence.

We make no attempt to model “fluid”’ turbulence. In-
stead, we consider a “mechanical model of turbulence”
where a mesoscopic approximation takes the turbulent
subsystems as chaotic oscillators, which are coupled har-
monically on a two-dimensional square lattice. For the
chaotic oscillator, we adopt the damped-driven pendulum
[4]. The dynamical equation is the second-order
differential equation,
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where ¢ is the displacement, a is the damping factor, o,
is the natural oscillation frequency, and @ and A are the
frequency and amplitude of the external torque. This
subsystem can operate in far-from-equilibrium situations
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so that it represents a very active functional subunit of
the total system. We choose the following values for the
parameters which give a chaotic state of the isolated os-
cillator: @wy=2.53, a=0.25, ©=1.62, 4 =3.8. These
parameters are not changed in our study. Our total
dynamical system is a ‘square array of these oscillators
coupled harmonically in ¢ with a coupling constant «.
The force F, (k) at the i, lattice site due to neighboring
oscillators is

F (i, )=x[$(i +1,j)+¢(i —1,j)—24(i,j)
+éi,j + 1)+ (i, j —1)—24(i, /)] . 2)

The initial angles and velocities are taken to be random,
and periodic boundary conditions are imposed at the bor-
der of the L XL square lattice. We note two obvious
dynamical features of this system: for x=0, we have
N =L XL independent chaotic oscillators, and for k >>1,
we have one “large” chaotic oscillator. We are interested
in discovering what is between zero coupling and infinite
coupling; hence the many-body physics of coupled chaot-
ic oscillators. We have studied the system dynamics as a
function of lattice size L and coupling constant k. We
found that the steady-state dynamical behavior was scale
invariant with respect to the relationship x=const X L2.
This can be understood by approximating our dynamical
equations by the partial differential equation (the
damped-driven sine-Gordon equation),
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where B=a% and a is the lattice spacing in approximat-
ing Eq. (2) by a second-order partial derivative. If the
characteristic features of the dynamics scale with the
length of the chain L =aN, then from Eq. (3) we con-
clude that B/L?=a/L%k=const. Therefore, the scale-
invariant dynamics satisfies the relation k=const X L2
The system sizes ranged from L =16 to 128, but most
simulations were based on L =61 and 64.
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Instead of measuring the continuous temporal evolu-
tion of the vibrations of the oscillators at each lattice site,
we record discrete displacements and velocities at each
Poincaré cycle. This mathematical technique simplifies
the complicated dynamics by viewing the trajectory stro-
boscopically, the strobe period being equal to the forcing
period of the individual oscillators. Hence, time flows in
discrete units of the strobe period and strobe dynamic im-
ages (SDI) are segmented jumps in displacement and ve-
locity. For purposes of visualization, we chose kinetic
energy, or velocity squared, to represent the local instan-
taneous dynamical feature of the oscillator at each lattice
site, which is color coded on a scale of 1 to 6 (hence,
“chromodynamics of SDI””). The advantage of viewing
the temporal sequence of these images becomes apparent
when we consider the “motion picture” of the collective
lattice dynamics of our system. For periodic motion,
there are a finite number of distinct SDI’s, equal to the
Poincaré period, and the image sequence repeats. For
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period 1 we see one static image, while for chaotic motion
the chromodynamics of SDI's will be “noisy”’ with no
time periodicity. In this paper, it is only possible to
display a “hint” of the complex pattern dynamics ob-
tained using this graphical analysis technique. We will
show a time sequence of a few SDI snapshots in hopes of
capturing the temporal pattern change, but a movie is
essential. Observing the chromodynamics of the SDI was
crucial to the interpretation of the experiments, much
like the need for visualizing turbulent fluid flow.

In Figs. 1-4, a time sequence of three SDI snapshots is
presented as a row for each coupling parameter k. The
time interval between snapshots for a given row is con-
stant and arbitrarily chosen so as to give an indication of
the pattern dynamics for a given coupling. In Fig. 1, we
see that as « increases from zero (no coupling, hence in-
dependently vibrating chaotic oscillators) to thirty, local-
ized “clusters of high kinetic energy” (red and yellow) in
a low kinetic-energy background (greens and blue) be-

FIG. 1. Successive rows of SDI snapshots from top to bottom are for k=0, 20, 30.
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come prevalent. The clusters have a compact, but rough,
structure that increases in average size with increase k.
The apparent motion is quite erratic, much like a “liquid
of Brownian clusters randomly walking and interacting in
two-dimensional space”; i.e., we see clumps of intense
turbulence energy in a relatively quiescent background.
Of course, no cluster of energy remains constant in size
or in existence throughout the simulation. In Fig. 2, the
successive rows of SDI snapshots from top to bottom are
for k=40, 60, and 80. For k=40, the kinetic energy pat-
tern “crystallizes” into a square lattice of four clusters
per computational cell, but the crystal pattern is unstable
and fluctuates between a “liquid state” and “crystal
state,” as suggested by the different unit cell
configurations displayed. For k=60, we returned to the
liquid state with larger average size cluster. At k=80,
the systems again crystallizes, but now with two clusters
per unit computational cell and with the average cluster
size being approximately twice the value for x=40.
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These features are demonstrated in Fig. 5(a) where the
cluster size distribution is plotted for the three couplings
(we arbitrarily define a cluster as a connected red-yellow
region in the instantaneous color field for the kinetic en-
ergy) and in Fig. 5(b) where the instantaneous average
kinetic energy as a function of time is plotted for these
same couplings. We note that the crystal state is much
more stable at k=80, suggesting that there exists a
unique « for an infinite-lifetime crystal state and that we
are closer to that value for the two clusters per unit cell
(k=80) than for the four clusters per unit cell (x=40).
Simulations for 8x=1.0 changes around k=40 and 80
show that there is a much larger window for quasistabili-
ty for k=80 and that the small scale fluctuations, on the
size of a lattice spacing, is preventing long-life stability
when the cluster size is not sufficiently larger than the lat-
tice scale. We verified this by studying smaller two-
dimensional arrays but did not quantify this behavior. In
Figs. 3 and 4, the successive rows of SDI snapshots from

FIG. 2. Successive rows of SDI snapshots from top to bottom are for k=40, 60, 80.
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top to bottom are for «=90,100,110,120,135,300. We
see that at k=135, the system has again crystallized, but
now with one cluster per computational cell. For simula-
tion times up to 10000 cycles, the field was stable. The
cluster size is again approximately twice the value for
previous k=80. Between the two crystal points, k=80
and k=135, the SDI's no longer have the appearance of a
turbulent liquid. Instead, the spatial patterns have
significant symmetry, while always changing and some-
times repeating. The variety of patterns appears to be
inexhaustible. The last row of SDI’s is for k=300, and
represents a cluster pulsating in size at the Poincaré
period. For infinite coupling, we would observe a solid
color field changing colors erratically. The peak and
average cluster sizes as a function of coupling strength
have been calculated from the size distributions [e.g., see
Fig. 5(a)], and an excellent linear dependence is found.
To summarize, we observe the kinetic energy pattern to
crystallize into a square lattice of four clusters per com-

putational cell at k=40, two clusters per computational
cell at k=80, and one stable cluster per computational
cell at k=135, each respective cluster size being approxi-
mately twice the value of the previous x. Each frozen
pattern is representative of spatial periodic dynamics
with period 1.

Returning to the lower couplings k, we noted the ap-
parent mixture of clustered erratic motion in a two-
dimensional calm background. Ruelle, in his remarkable
book entitled Chance and Chaos, points out that most ap-
proximate theories of fluid turbulence assume that tur-
bulence is homogeneous while turbulence is actually spa-
tially and temporally inhomogeneous with the coex-
istence of fluctuating regions of smooth and erratic dy-
namics [5]: “In reality, a turbulent fluid always shows
clumps of intense turbulence in a relatively quiescent
background. And hydrodynamicists keep looking for the
correct theory to describe this clumpiness.” This fact
was reemphasized by Smith and Yakhot [6] in an extraor-

FIG. 3. Successive rows of SDI snapshots from top to bottom are for k=90,100,110.



49 TURBULENT DYNAMICS OF AN INTRINSICALLY CHAOTIC FIELD 3707

dinary simulation study on two-dimensional turbulence
where they state: “High Reynolds number turbulent
flows are characterized by complexity, loosely defined as
an intricate interplay of coherent and random dynamics.”
In the context of trying to understand the global dynami-
cal behavior of our model, the previous remarks motivat-
ed us to consider our system to be in a “turbulent” state
and to see how similar it is to “real” fluid turbulence.
Benzi et al. [7] have established a new form of self-
similarity in turbulent flows which they named extended
self-similarity (ESS). Defining AV (r)=V(x +r)—V(x),
where V(x +r) and V(x) are velocities along the x axis
separated by a distance 7, they considered the expression

G,=(IAV (") =B, L[V (PN, @)

where ({ )) denotes averaging. They found that the scal-
ing exponents {(n) agree with the exponents of fully
developed turbulence obtained from the relationship

AV (D)) ~r | (5)

where v<<r <<L, L being the integral scale of motion
and v being the dissipative scale. Furthermore, Benzi
et al. claim that Eq. (4) is valid not only for fully
developed turbulence but also for moderate Reynolds
number. The Kolmogorov theory predicts &(n)=n /3.
We have performed the ESS analysis for our chaotic os-
cillator field for couplings that appear turbulent, and the
results are shown in Figs. 6(a) and 6(b). Our Fig. 6(a) is
to be compared to Benzi’s Fig. 3(a) where a log-log plot
of G,=(|AV(r)|*) vs Gy=(|AV(r)|*)) is presented
for “real fluid” flow past a cylinder at Reynolds numbers
6000 and 47000. The slope and intercept for the two
plots are identical. In Fig. 6(b), the scaling exponents
§(n) computed for n =1 to 6 (the dots) are presented and
compared with the fluid turbulence measurements of
Benzi et al. [7] (the diamonds) and the Kolmogorov
theory. Again, we note good agreement with our model

FIG. 4. Successive rows of SDI snapshots from top to bottom are for k=120, 135, 300.
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FIG. 5. (a) The cluster distribution as a function of size is
plotted for the coupling k=40,60,80 (we arbitrarily define a
cluster as a connected red-yellow region in the instantaneous
color field for the kinetic energy). (b) The instantaneous average
kinetic energy as a function of time is plotted for k=40, 60, 80.
The time unit is equal to the forcing period (or Poincaré period)
of the individual oscillator.

and real fluid turbulence. This suggests a universality in
the “turbulence” dynamics of a real fluid and our chaotic
oscillator field. In the context of trying to understand
this global turbulent behavior, we think of our system as
a coarse-grain dynamical model where each subsystem is
turbulent when in isolation and the total system dynam-
ics arises from intersubsystem coupling; i.e., the intrinsic
“homogeneous turbulence” of the collective subcells
gives rise to a global dynamical structure that is not uni-
formly turbulent in space and time. A detailed ESS
analysis between fluid and oscillator turbulence is in pro-
gress [8].

We have learned that this simple model of coupled,
“intrinsically” chaotic subsystems can exhibit a very rich
and complex dynamics, both in space and time. Of
course, the obvious impulse is to study larger systems,
different types of chaotic subsystems, various local and
nonlocal coupling schemes, higher dimension packings,
mixed systems (chaotic and periodic subsystems), frustra-
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FIG. 6. (a) Loglog plot of G,=(|AV(r)*) vs

G, = |AV(r)]*)) is presented for the denoted couplings corre-
sponding to the “turbulent” states of the chaotic oscillators
field. (b) The scaling exponents {(n) computed for n =1, 2, 3, 4,
5, and 6 (the dots) and compared with the fluid turbulence mea-
surements of Benzi et al. [7] (the diamonds) and the Kolmo-
gorov theory.

tion, and much more. However, the very simple concept
of modeling the interaction of chaotic subsystems may
provide a new paradigm for studying spaciotemporal tur-
bulence in the real world.

The author thanks Dr. Sauro Succi for bringing Ref.
[7] to his attention.

[1]R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Non-
linear Physics: From the Pendulum to Turbulence (Har-
wood Academic, Chur, Switzerland, 1988).

[2] E. Atlee Jackson, Perspectives of Nonlinear Dynamics: 1
and II (Cambridge University Press, Cambridge, England,
1991).

[3] F. F. Abraham, Phys. Rev. E 47, 1625 (1993).

[4] G. L. Baker and J. P. Gollub, Chaotic Dynamics: An In-
troduction (Cambridge University Press, Cambridge, Eng-

land, 1990).

[5] D. Ruelle, Chance and Chaos (Princeton University Press,
Princeton, NJ, 1991).

[6] L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352
(1993).

[7]1 R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Mas-
saioli, and S. Succi, Phys. Rev. E 48, R29 (1993).

[8] F. F. Abraham and S. Succi (unpublished).



FIG. 1. Successive rows of SDI snapshots from top to bottom are for x=0,20, 30.



FIG. 2. Successive rows of SDI snapshots from top to bottom are for x =40, 60, 80.



FIG. 3. Successive rows of SDI snapshots from top to bottom are for k=90, 100,110.



FIG. 4. Successive rows of SDI snapshots from top to bottom are for k=120, 135,300.



